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TECHNICAL NOTE 3788

STABILITY DERIVATIVES OF CONES AT SUPERSONIC SPEEDS

By Murray Tobek and William R. Wehrend
SUMMARY

The aerodynamic stability derivetives due to pitching velocity and
vertical acceleration are calculated by use of potential theory for cir-
cular cones traveling at supersonic speeds. The analysis is hased on two
theoretical techniques used successfully previously in epplication to the
case of uniform axial and inclined flow. In the first, potential solu-
tions for axial flow and crossflow are derived from the first-order wave
equation but in application to calciuletions for the forces no approxima-
tione are made elther to the tangency condition or to the isentropic
pressure relation., The second method consists in combining the first-
order crossflow potential with an axial-flow potential correct to second
order. Closed-form solutions by both methods are found for & cone, and
numerical results for the stability derivatives are presented as a funec~
tion of Mach number for cones having semivertex angles of 10° and 20°.

In addition, expressions for the forces, moments, and stability
derivatives of arbitrary bodies of revolution are obtained using Newtonian
impact theory. Numerical results for cones compare well with those
obtained from the combined first~ and second~order potential theory at
the highest Mach number for which the latter theory is appliceble.

INTRODUCTION

The lmportance of the body as a lift-producing component of aircraft
flying at supersonic speed has occasioned a great deal of theoretical work
from which it is now possible to calculate the body's static aerodynamic
properties with good accuracy (see, e.g., refs. 1 to 3 and attendant
bibliographies). There is required, however, along with the static prop-
erties, theoretical information from which the dynamic behavior of bodies
can be calculated, and in this field no work has been done that can be
said to be gpplicable to nonslender bodies traveling at high supersonic
Mach numbers. Slender-body theory, as is well known, fails to predict a
dependence of the aerodynamic coefficlents either on Mach number or on
body shape (see, e.g., ref. 4). The work of Dorrance (ref. 5) based on
the linear theory does indicate a Mach number dependence, but here too
approximations made in the analysis effectively limit its application ta
bodies of venishingly small thickness,
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In this report, an attempt is made to overcome these limitations by
adepting to the calculation of the body's rot stability derivatives two
theoretical methods derived by Van Dyke (ref. 1) that have proven suc~
cessful in calculations for the static aerodynemic derivatives. It was
shown by Van Dyke that the solution for normal force of a cone derived
from the first-order potential equation may be greatly improved in accu-
racy (in comparison with the exact numerical results, ref. 2) if no
approximations are made to the tangency comdition or to the isentropic
pressure relation. It was also shown that a further improvement could
be realized by the use of a combination of first- and second-order poten-
tial solutions. The same ideas are used herein to calculate for a cone
the stability derivatives due to pitching velocity, ch and Cmq , and due

to vertical acceleration, chi and C’“&' The results are believed to be of

the seme order of accuracy as those of reference 1 for the normal force.
due to angle of attack, and hence, for a cone of given thickness ratio,
should apply to the same range of Mach numbers over which the normal force
compares well with the Kopal results (ref. 2). Moreover » a8 in the angle-
of-attack case, the cone solutions given herein are adaptable to the cal-
culation of the stability derivatives of other more general body shapes
by use of the techniques described in references 6 and 7.

In addition, expressions for the forces, moments, and stebility
derivatives of arbitrary bodies of revolution are obtained from Newtonian
impact theory in order to furnish some information about the nature of
these quantities at Mach numbers beyond the highest for which the results
derived from potential theory are applicable.

NOTATION

speed of sound in still air

normal force
qoS

normal-force coefficient,

pitching-moment coefficient, Pitch;-ng Zm°ment
Q

R R S 5

pressure coefficient

axial force
q,8

(o
~

axial-~force coefficient,

~

body length

) Mach number, 'a%
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q angular velocity (sketch (b))

4 dynamic pressure, !2'- poV2

R(x) radius of body in r,w plane (sketch (a))
s body base area, sR2(1)
t time

u,v,w free-stream velocity components relative to cylindrical coordinates
fixed in body

x,r,0 cylindrical coordinates (sketch (a))
v velocity in axial direction of body

VN camponent of free-stream velocity normal to body surface

o angle of attack

B T

v4 ratio of specific heats

] slope of body meridian curve (sketch (a))
Py density of still air

T slope of cone surface, R_LZ)

4] total potential

0 perturbation potential

P first-order uniform axial flow potential
Xo second~order uniform axial flow potential
Q free-stream potential

When a, &, and q are used as subscripts, a dimensionless derivative

is indicated, and this derivative is evaluated as the independent variable
(cr., &, or q) approaches zero and all other variables are identically zero.,
Thus, .

C — e e e e e -
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ANATYSIS

Coordinate System and Definition of Free Stream

In the succeeding enalysis we consider a pointed body of revolution
flying at constant supersonic forward speed. Our purpose is to calculate
the body?!s aerodynamic stability derivatives corresponding to the follow-
ing motions: (1) sinking with uniform vertical velocity, (2) flying in Y
& circular path with uniform angular velocity and at zero angle of attack,
(3) ginking with uniform vertical acceleration. In order to define the .
r,w=s/2 motions conveniently, a cylindri- -
-] cal coordinate system is chosen
that is fixed with respect to the
body. As shown in sketch (a),
L’L the origin of the coordinate
system is placed at the body
apex, The positive branch of
the x axis is coincident with
the body's axis of revolution,
and the coordinates 1z and w
Sketch (a) are measured in a plane perpen-
dicular to the x axis. With
respect to this system of coordinates, the components of free-stream
velocity u,v,w for the three motions are given below.

Sinking with uniform vertical velocity.-~ This case is of course
equivalent to that of a stetionary body situated in a uniform inclined
stream and has already been treated extensively (refs. 1 to 3). It is
included here again since the methods to be discussed subsequently for
calculating the stability derivatives due to pitching velocity and verti-
cal acceleration are in large part derived from the one used here. Let
o be the angle of inclination of the stream with respect to the w =0
plane; then the components of stream velocity in the axial, radial, and
azimuthel directions, respectively, may be written,t

lNote that we have chosen to designate as V +the axial component
of velocity rather than the resultant flow velocity. It is necessary
to do this in the subsequent cases, and we comply here for the sake of
consistency. Note also that the radial and azimuthal velocities are - o
measured in directions respectively normal and tangential to the body .
surface in the r,w plane.
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u=yV
v=Vtan o sin w (1)
w=7V tan g cos w

Once the normel-force coefficient Cy end pitching-moment coefficient
Cyp corresponding to this motion have been calculated, the stability
derivatives CNm and Cma are formed according to the definitions,-

CN“'=@::N>G-90, cma'=<%%l>

o —> 0

Pitching with uniform engular veloclty.- For this case, the body is
considered to be flying in & circular path at zero angle of attack and
with constant angular velocity q. The motion is, of course, that of the
whirling-arm experiment, and, in texrms of the latter case, we specify
that the point of attachment of the body to the arm be at the body nose.
With respect to a fixed system of coordinates, the pertinent physical
dimensions are as shown in sketch (b). Az
It will be assumed that the pitching
rete q is small, so that ql K V.
The radius of the flight path V/ q,
is then large compared with the body
length. The body is assumed to have
traveled far enough to have outrun
its starting sound waves, but not so >
far as to have encountered its own / X
wake, so that the flow may be said
to be steady.

In the body system of coordi-
nates, the components of stream
veloclity are,

\'}
u=V-qgr sin
v =qgx sin w (2)
., W=0gx cos 0
The stability derivatives due to Sketch (b)

the motion are calculated according
to the following definitions:
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. oC "oCy
ch = N s cmq =
ql ql
%) (%)
q—>o q-—>o
| Altitude. h Uniform verticel acceleretion.-
’ Since the body sinks (without
/[: pitching) at a linearly increasing
- : v rate, the flight path describes the
Jj — parsbolic arc shown in sketch (c).
It is assumed that the motion has
/ ) \ continued long enough so thet tran-
Flight Path sient effects have died out and,
h=ho~Va&t72 further, we choose to begin record-
ing time at the point where the
angle of attack is zero.

Time,t As viewed from the body-
coordinate system, the components
of free-stream velocity are,

0
Sketch (c)

u=YV
- v = V&t sin w (3)
w = Va4t cos w
where & is a constant. Note that although it has been assumed that
transient effects associated with the start of the motion have disappeared,
nevertheless, the flow in this case is unsteady, the crossflow velocities
being linear functions of time,

The stability derivatives due to the motion are evaluated when the
angle of attack is zero (t = 0) according to:

o | A . mg |
) a(-@%)&_>9 B<-cl{rl>a'r,—>o

Equations of Motion and Boundary Conditions

For the main part of this paper, the eanalysis will be based on the
first-order steady and time-dependent potential equations for compressible
flow. In body coordinates, the latter equation is,

——————— e - ———————— —
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A perturbation potential ¢ 1is introduced such that
o(x,r ,0,t) = o(x,r,0,t) + p(x,r,0,t) (5)

/
wvhere Q is the free-stream potential. Direct substitution gives for )
‘the first-order time-dependent perturbation equation,

P Pr oM 1 -
qu)n‘q’rr'?é"?""a_oq’xt"';:ﬁ Ppy =0 (6)

The steady-state counterpart of equation (6) is obtained by &liminating
time derivatives, so that,

- B -0 -—m_3r_o (7)

Equation (7) will be used to determine solutions for the stability deriva-
' tives due to steady sinking and steady pitching, whereas the stability

derivatives due to vertical acceleration are derived from equation (6).

In either case, however, the boundary conditions have the same form,

namely, that,

(1) Velocity perturbations vanish on the Mach cone emanating from

the body nose:
(P<x: %: w:t> =0 (8)

(2) The flow velocity normal to the body surface is identically zero:

dR q)r(x:R:w:t) + ﬂr(X,R,w,t)
ax (9)
ax g (x,R,0,t)+ 8 (x,R,0,b)

The velocities @, and Oy are ,' of course, the free-stream radial and
axial velocity components, respectively, so that more conveniently,

darR CPr(X, »0,8) +v(x,R,w,t)
ax q)x(x, ,0,t) +u(x,R,w,t)

(10)

——am——— e em Aty o gt - — e S e, . A A e e i . e il e e o i
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where, for the three motions to be considered, u and v are given by
equations (1) to (3). Note also that we designate the independent radial
coordinate by r, whereas in evaluation of conditions at the body surface,
the fac% ';:])m.t r is a function of x is indicated by the use of R (i.e.,
r=R=R(x)).

Firsgt-Order Solutions for the Potential

We consider next the task of finding solutions for the perturbation
potential satisfying equations (6) or (7) and compatible with the boundary
conditions, equations ?8) and (9), corresponding to each of the three
motions.

Sinking with uniform vertical velocity.- As mentioned previously,
the method of solution in this case is well known; however, since the
methods to be used for the two subsequent cases derive from the one used
here, & brief account of the essential steps is given below.

The steady perturbation potential is broken into two parts: A poten-
tial ¢, independent of w and hence corresponding to a uniform axial

flow, and & crossflow potential ®,- The total perturbation potential is
then the sum of @, and @,. For the axial-flow potential ¢,, the equa-
tion of motion is,

Por
Pop ¥ thpom=0 (11)

with the boundary conditions (from egs. (1), (8), and (10))

%(x, %) =0 (12)

9o, (%,RB) :
R__Ox (13)
dx (pox(x,R)+V

‘A solution to equation (11) that sutomatically satisfies (12) is (ref. 6),
O

CPo(x,r) = f f(x - Br cosh u)du (14)

-1 x
cosh -E;




NACA TN 3788 9

vhere f(x-pr cosh u) represents the distribution of sources along the
x axls, and is to be chosen such that equation (14) satisfies the
boundary condition (13).

For the crossflow potential P> the equation of motion is,

... @
Prpp oot - B2, =0 (15)
with the boundary conditions (egs. (1), (8), and (10)),

9% 35 w>=° (16)

cplr(x,R,m)+ V tan a sin w

drR
—_— 1
dx Pry (x,R,w) (17)

A solution to equation (15) that automatically satisfies (16) is (ref. 6),

@, (x,r,w) = -p sin w f m(x - r cosh u)cosh u du (18)
-l X
cosh B

where m(x - pr cosh u) represents the distribution of doublets along the

x axis, and is to be chosen such that equation (18) satisfies the boundary
condition (17).

Pitching with uniform angular velocity.- The procedure in this case
parallels the above development. Again, the perturbation potential o
is broken into a uniform axial flow potential ?, and a potential o _,
each having the same equation of motion as equations (11) amd (15),
respectively. Note, however, that unlike the previous example, the cal-
culation for the potential ¢, must take into account the nonuniform
axial component of stream velocity, -qr sin w (eq. (2)). The boundsry
conditions on @, are, from equations (2), (8), and (10),

(Po<x: %)""O (19)
,R
% _ % (x,R) (20)
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while the boundery conditions on ¢, are,

(p2<x, %, w>=0 (21)

cpzr(x,R,m) +qgx sin w

%= (22)

qJZx(x,R,w) -gR sin w

The solutions for the potentials 9o a@nd @, of course Have the same form

as equations (14) and (18), respectively, where f£(x- pr cosh u) and
m(x - pr cosh u) are to be chosen such that equations (20) and (22) are
satisfied.

Sinking with uniform vertical acceleration.- As mentioned previously,
this is & problem in unsteady flow, since the crossflow velocities v
and v are functions of time. It is still possible, however, to consider
the potential ¢ in two parts; an axial camponent P that is independent

of both + and w, and hence is again governed by equation (11), and a
crossflow component @4, governed in this case by equation (6) , with

P=0Qqg.

For the axial-flow potential, we proceed exactly as in the two
previous cases. The boundary conditions to be satisfied are, from

equations (3), (8), and (10),
x\_ .
Dol X, E)—O (23)

& %o, (x:R)
ax v+ cpox(x,R)

(2k)

The solution for @  is given by equation (1L) where f£(x-pr cosh u)
is chosen such that equation (24) is satisfied.

For the unsteady crossflow potential @5, We adapt a concept used
previously in wing theory by Ribner and Melvestuto (ref. 8) and origi-
nated by C. S. Gardner. It is easily verified by substitution into
equation (6) that the following relation satisfies the unsteady potential
equation no matter what the constant K may be:

9s_ oMk
3 K\F(x:r:m)*'(t Bav. X(x,r,m) (25)
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where

¥ steady-state potential for unit pitching velocity about body apex,

)
q
X steady-state potential for unit angle of attack, t::a.

Note that the potentials involved in equation (25) are steady-state
potentials and, further, are just the potentials ¢, and ¢, developed
in the two previous sections. Having found a solution for the potential,
we then must satisfy the boundary conditions which, from equatioms (3),
(8), and (10), are

q)3<x, %J w,'l:>=0 (26)

s, (X,R,0,8) + Vit sin w

dR
= 2
dx cpax(x,R,w,t) (27)

Equetion (26) is satisfied immediately, since the potentials  and X
individually satisfy it. The tangency condition, equation (27), is then
readily satisfied by proper choice of the constant K.

Pressure, Force, and Moment Coefficients

It will have been noticed in the previous section that we have speci-
fied the exact form of the tangency condition for each of the motions
considered. The same will be done for the pressure relations, to be given
below. Following Ven Dyke (ref. 1), the view taken on this point is simply
that approximations to the tangency snd pressure relations, while Justifi-
able mathematically on an order basis, serve to impair unnecessarily the
accuracy of the solution in comparison with known numerical results. While
this is known to be the case only for the ‘uniformly sinking motion, the
formulation of the problem for the other motions has introduced no further
approximastions, and hence it is entirely reasonable to suppose that the
game order of accuracy will be realized in these cases as well if the
pressure and tangency relations are not approximsated.

The pressure coefficient must be defined separately for each of the
three motions; this has been done in the appendix, and the results are
repeated here for convenience,

——are Asw AW w4y mwm—— o= -4 =t e m e e o
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Sinking with uniform vertical velocity.-

V4
=1
°P1=7% (1- —-—7;1M2AJ> -1 (28)
where,
20,24 r)2
Ay =3‘;25+2 tan %“;- cos w+%r- 8in w>+(px ‘Prvz (cpm/ )

and r is taken as R(x) when evaluating Cp at the body surface.

Pitching with uniform angular velocity.-

.
2 y-1 7o
T o - ; M2 -
Op2 =2 ( A Aa) 1 (29)
where
2 2
Ap = %-% qr sin m+gE P cos w+-(p—r- sin w>+ Px® +0r +(cpw/r)
v v vV &V v V2
Sinking with uniform vertical acceleration.-
A
7-1i
=2 JY-1l e -
Cpe= 2 (1 5 MAs) 1 (30)

where

2
Aa=%z+-2—:b;+2dt@1$ cos m+?—;- sin w>+ [cpx2+ q’rz‘;(%,/r) ]

Normal-force and pitching-moment coefficients.- Once having the
pressure coefficient, one can determine the normal-force and pitching-
moment coefficients from the following relations:

I
1 2
CN = ‘%f R(x)dx\/:: CP(X}R,N)Bin w dw (31)

(o]




NACA TN 3788 13

¢

A 2
Cm=§%\[ [xR(x)+ta.n eRz(x):]dx‘_j[ Cp(x,R,w)sin 0w dw (32)

N

where the pitching moment is referred to an axis through the body nose.
Stability Derivatives for a Cone - First-Order Theory

The foregoing equations for potential and pressure coefficient are,
in principle, applicable to the determination of forces, moments, and
stability derivatives of arbitrarily shaped bodies of revolution. In
order to complete the analysis, it is necessary to find distributions of
sources end doublets f£(x- Br cosh u) and m(x - pr cosh u) that are com-
patible with the boundery conditions corresponding to the specified body
shape. Unfortunately, analytical expressions for these quentities have
been found only for the cone. However, it has been shown in the axial-
and inclined-flow cases (refs. 6 end T) how, by the use of summation
techniques, the cone solution can be used to find solutions for other
more general body shepes to any desired accuracy. The same techniques
are readily adapteble to the other motions considered herein. Therefore,
as a necessary beginning towerd obtaining the stability derivatives of
more general body shepes, the calculations for the cone are carried out
below for each of the three motions under consideration.

Sinking with uniform vertical velocity.- Consider first the potential
for axial flow ¢,, given by equation (14). For the case of a cone, whose
surface is given by R =1TX, an appropriate distribution of sources is

simply (ref. 6),
£(x - Br cosh u)= Ag(x - pr cosh u) B (33)

where Ao 1is a constant, to be determined from the boundary condition,
equation (13). Integrating equation (14), and substituting the sppro-
priate derivatives in equation (13), we get for A,

Ve
Ao= (34)
° 2cosn~? -ﬁ%ﬁ J1-pg2r2

whereupon the axial-flow potential is,

Po(x,7) =AdNx2 - B2r2 - x cosh™* B%} (35)

PR e re———— - e e r————— e, — e e— re— - .- — e~ -
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The computation for the crossflow potential ¢; proceeds in the same

wey. An appropriaste distribution of doublets is found to be (ref. 6)
m(x - Br cosh u) = A;(x - Br cosh u) (36)

Substituting in equation (18), integrating, and solving for A; in
equation (17),

2Vr2tan o

A]_ = (37)

(272 + 1)».]1 - B212 + p2t12cosh~l 'Bi
T

and

o1(x,r,0) = A, -g- sin w (-E*;sz- p3r2 - Br cosh~? -;{—1) (38)

The I(Jerimrba.tion potential @ is then given by the sum of equations (35)
and (38).

Having obtained the potential, one can now compute the pressure
coefficient by equation (28). However, it is more convenient to proceed
directly to the calculation of the stability derivatives CN“ and Cmd',
by means of the expressions,

“

cN) 2 Z

= —y——— - e

Cy, = 3 . [R(x)dxf
- —

X
2

&

]> sin w dw
a—>0

e acz.—->o

—TF_
-égi-[z[xR(x)+ta.n 8 Rz(x)]dx-{aGS-cz-lz Qosin w dw
2
J

(39)

where
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L

- - [l- L;-]-' MZ(AJ.)G —_ o]ﬁ<%%2 - 0

oCp
The quantity ( Ba.l> is computed by substituting the appropriate
o —>o0
derivatives of ¢ into equation (28) and differentiating with respect

to o as indicated. Substituting the results into equation (39) and
integrating gives (letting 7 = 1.hk),

o - <A232r1> (1 l+72 1

Vo " \a + g2 +A + 272
L (30)

L, 2

Cmg, = '3(1"72)01%

o
where
A p2r2cosh~t E]:l:

Jl - p2r2

Ty

y {1 + O.2M2[l - (1 + Ta)<_A__-¢:i'§zj]}a.s

The sabove results reduce to the slender-body-theory result as the thick-
ness parameter T approaches zero:

Oy, = 2
(h1)

Cang,

]
w &

Pitching with uniform angular velocity.- Again, consider first the
uniform axial flow potential ¢,. There is nothing new to compute,
however, since the equation of motion and boundary conditions are the
same for all three cases. The potential ¢, 1is, therefore, given by
equation (35).
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For the potential ¢, (eq. (18)) a distribution of doublets that
satisfies the boundary condition, equation (22), is,

m(x - Br cosh u) = Bo(x - Br cosh u)Z (k2)

Substituting equation (42) in (18), integrating, and solving for B in
equation (22), we get,

@2(x,r,w) = Bpsin Barz (B == + ) /(51_) -1}~ 8%rx cosh-l

where

(43)

-ar2(1 + 12)

Bo =
s 2,38/2
T)

(2 - 1)<Ba‘r2cosh"':L LoJ1 - g32) - E: (L -p
BT 3

As before, the total perturbation potential ¢ is.the sum of v,
(eq. (35)) and 9, (eq. (43)). Also, in the same way, the stability
derivatives CN and qu are computed a.ccordlng to,

7€
Z 2 /3
Cy. = -= R(x)dxf i sin w dw
4 4 aE—}_
°Z vq_->o
>(uu)
3Cp z z oCp
Cug =[ 2B =-g-f[xR(x)+ta.n932(x)]dx 2} stmwaw
at Sty o 3%
Vq_-éo = qQ->o J

where sz is given by equation (29). There results,
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;
_2p 3(1-4) - 2(1-p2r2)

®Ng = 3 {l +2<A ﬁ2>(l * T2)[1;(1— 2r2) - 3(1- 12)(1-A)] }

> (b5)

Cog = - 2 (1 + ™2)Cyg

where A and I'y; have been defined in equations (40).

As in the previous case, these results reduce to the slender-body-
theory result as T = 0;

(46)

Sinking with uniform vertical acceleration.- The sxial-flow poten-
tial @, is again given by equation (35). For the time-dependent cross-
flow potential P3, use is made of equation (25). Inserting the values
for @, and @, obtained in the two previous cases into equation (25)
gives,

oo | [ [ G ) e £
B E@IE) |G e

(k1)

where By/q and Aj/tan a have been defined in equations (43) and (37).
The constant K is then determined by substituting the appropriate
derivatives of @, into the boundary condition, equation (27). There
results,

- T e e T L N R RIS Be i W . gy S MM A = % e PR e e o oy 4 W ——— s = et e e w e @
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2 (372 + L)fL- B2 + (1 - 72)p272cosh~? s_l-r

- (48)
B2(1 + 72) (2‘1’2+l).,/]_._-—-B—2-r-2 + B2r2cosh~t — B]:f

As before, the sum of ¢, (eq. (35)) and @5 (eq. (47)) is then the total
perturbation potential ¢@ due to uniform vertical acceleration.
The stability derivatives Cy. and Cp, are formed in the same way
a a

as the two preceding examples, using the pressure coefficient, equa~-
tion (30), and the relations,

ﬁ
CN& = C > = % R(x)dxf sin w dw
& >0 ct.-éo
> (49)
7
o } o 2 3cp,
Cm&' = 5[[1‘3(3!) +tan@ R (x)]de,[ .;9-"_.-_{ sin w dw
-Z v
2 @& ->0 J

It should be noted that the stability derivatives are evaluated when the
angle of attack is zero. This occurs when t = O, so that, after taking
the required time derivative in equation (30), the remaining terms multi-
plied by t may be elimingted. The results are,
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_2; 2(1~4) 3(1-A) - 2(1- p3r2)
e <<A 2>{ P Trarer NI o) - - M- 12)] i

L-24)1, (1-8) - ) (50)
1+A+273)  1+A+272

3
=~ 2 (1 + 72)Cy.
Cmd M ( ) N, J
As T -> 0, the above results reduce to the slender-body-theory result,
2
Cwy. = =
Ns 3
(51)
==X
Cmd = )

Stability Derivatives for g Cone = Combined
First- and Second-Order Theory

It has been shown by Van Dyke (ref. 1) that & further improvement
in the first-order results for pressure and normsl force due to inclined
flow past a cone can be realized by making & second-order correction to
the axial~flow potential. This is called in reference 1 a "hybrid theory.”
The ssme idea can be incorporated in the other two cases considered herein,
since in all three, the axisl-flow potential has the same form. Moreover,
as in the purely first-order case, the resulting solutions are adaptable
to the calculation of the stability derivatives of bodies of general shape
by use of the technique outlined in reference 7. Unlike the ineclined-flow
case, however, it is not assured that by meking the second-order correc-
tion the solutions corresponding to uniform pitching velocity and uniform
vertical acceleration are necessarily improved. In the absence of exact
numerical results with which to compare the solutions, it can only be
supposed that such an improvement is likely, again in view of the fact
that in the formulation of the problem no approximations are made beyond
those which also exist in the inclined-flow solution. There follows a
brief description of the method of applying the second-order correction
to the potential for the cone.

For the case of uniform axial flow past a cone, the potential X, ,
correct to second order, as obtained from.reference 1 is,

- . T e T e e et BT e VMR M - e Yo ¢ P r———— e e —
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2
%= [ 1 -<%> - cosh-l-é-c;] +
2 2
B2M2 (cosh"l -BEI') - (N + 1) /1 - (.BEI') cosh~1 ,é_;_‘ -
E (= N T
X ¥ ol
% @ [1 - (’f) T
where,
D= (1+P-Q)+2
J]F—r—z + 12cosh~1 -B]—'-
-
ar
o (L) p2_ (W-1)Pr2A  (N+1)p%t 3 peré
A+p2 (1-82r2) (1 -g22) % (82 + A)(1 - g2r2)
YA i (N+1)p%r®  (W-1)p%r3A 8(2 + p2r2)
+B (1 -82r2) (1-8%3) L (pP+A)(1-p3r)

2
E = T
Jl - 2712 1+ T2gsech™1pT
§ < e

op2
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This result applies to the uniform axisl-flow potential for each of the
three motions. The derivation of pressure coefficient and stability
derivatives then proceeds exactly as before, with the exception that
equation (52) is used in place of equation (35). The results for the
stability derivatives are,

_ u.52>< 1472
CNa-2F2<_A 2/\1 + 2% +A

2, 3(1-4) - 2(1- g312)
Cug = 3 {1 Az ) Ta)[h(l- g272) - 3(1- A)(1- 72)] }

er, -5 (F @Rl E s

> (53)

(1 - A) N (1 -4)
1+A +272 L+A+272

Cma—-—(1+72)01\r

Cng = - % (1 + 72)ey,
= .3
cma_-E(1+72)cN
J
where

= {1+o.2[1- (1+ #)(Z‘iﬁ—:;]}z.s
B = (1 + E— Q+ P)

and
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Note that these results are derivable from the purely first-order solutions
(egs. (40), (45), and (50)) if the factor p2/(A+82) is multiplied by u
wherever it appears in the first-order solutions. Therefore, since u
goes to 1 as T —> 0, these results also reduce to the slender-body-theory
results (egs. (41), (46), and (51)) as + > 0. Note also in equa-

tions (53) that the pitching-moment coefficients are simple multiples

of their respective normal-force coefficients. For & given thickness
ratio, the centers of pressure are therefore invariant with Mach number.

Transfer of Axes

The results for CNg_’ Cmm, Cmq, and Cm& presented in the preceding

sections are applicable only to the case of a body whose center of gravity
is at the nose. These results may be used, however, to calculate the sta~-
bility derivatives for any other center-of-gravity position, by means of
the transfer relations given below.

3

._ Xo
Crng = CN% -3 Oy

Cog, = cma.o +'J;_o CNe
> (5k)

2
_ %o o0, -(X
‘ Cmq = Cmq, * 3" OFg, = 3 <Z>CN°°

Cmfcma,,*fzcha )

Here, xo is the new center of gravity position, measured positive rearward
from the nose, and the subscripted terms are the stability derivatives as
calculated for xo = O.

Newtonian Impact Theory

Results cannot be obtained by the potential theories used in preceding
sections above & Mach number for which the Mach cone from the body apex
coincides with the body surface. For bodies of moderate thickness ratio,
this condition limits the epplicability of the theories to the Mach number
range below about 3 or 4., For Mach numbers very much higher than this
1limit, it may be expected that the underlying assumptions of the Newtonian
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impact theory become increasingly valid. Therefore, in order to provide
some information on the nature of the aerodynamic forces, moments, and
stability derivatives at very high Mach numbers, the Newtonian theory is
adapted below to the derivetion of these quantities for arbitrary bodies
of revolution.

Pressure, force, and moment coefficients.~ The assumption basic to
impact theory is that the flow, upon striking the body, loses entirely
its component of momentum normal to the surface and continues along the
surface with its tangential component of momentum unchanged. The loss
of momentum normal to the body surface yields a pressure force that is

simply (ref. 9),

P 2 (55)
K, 7

where Vy 1is the component of velocity normal to the body. It is to be
noted that only those portions of the body that "see the flow," that is,
are under direct impact from the stream, will experience a pressure force.
The remsinder of the body is generally assumed to be at the pressure of
the free stream, so that on these portions, the pressure coefficient is
zero. Therefore, when integrating the local pressures over the body sur-
face to obtain total forces and moments, the integration proceeds only
over the portion of the body receiving compression flow.2 The formulas
for normal force, axial force, and pitching-moment coefficient then are,

Xu wy(x)
cy = - %[ R(x)dx[ Cpsin w dw A
T2
Xu mu(x)
Cx = %[ R(x)tan 0 dax J Cpdw > (56)
-}
Xy, wx)
Cp = é% / [(x - x5)R(x) + tan © R?‘x)]dx\lﬁ Cpsin w dw )

2pctually, in addition to the impact forces, there should be consid-
ered the centrifugal forces which arise from the fact that the flow parti-
cles follow curved paths along the body after impact (ref. 9). Some gross
estimates of their magnitude have been made which indicate that they are
negligibly small for the small changes in a, d, and q that are of primary
interest here. A more precise estimation of their magnitude is a matter of
some difficulty, and in view of the approximate nature of the entire theory,
the effort required in this direction does not appear to be warranted. The
centrifugal forces are therefore neglected in the subsequent analysis.
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Sketch (d)
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Sketch (e)

u=YV ~-qgr sin w
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where the quantities wy(x),
Xy, and Xo are illustrated in
sketch (d). Provision has been
made in equation (56) for an
arbitrary axis of rotation xo
for reasons to be made clear in
the next section.

Combined angle of attack
and pitching velocity.- Since
the pressure coefficient
(eq. (55)) is proportional. to
the square of the normsl com-
ponent of velocity, there arises
the possibility that the forces
and moments due to a motion
involving both pitching and
angle of attack may not be
treated separately, as in the
case of the usual linear analy-
sis. Therefore, we begin by
investigating the forces due to
a combined motion. Further, for
the same reason, it is not imme~
diately evident that the trans-~
fer relations given previously
(eq. (54)) remain valid, so that
rather than choosing a particular
axis of rotation, we shall con-
sider the body to be pitching
sbout an arbitrary axis, Xj,.
Referred to a fixed system of
coordinates, the situation is
as illustrated in sketch (e).

In the body system of coordi-
nates, the components of stream
velocity in the axial, radial,
and azimuthal directions are,

v =V tan @ sin 0 + q(x - x5)sin w (57)

5
]

V tan o cos w + g(x - xg)cos w
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The components u and v are in turn resolved into the component Vi
normal to the body surface by the relation,
Vgy=using - v cos 6 (58)
so that, )
Vi = V(sin 6 - tan « sin w cos 8) - q sin w[(x ~ xg)cos 6 + r sin 6]
(59)

Forming the pressure coefficient according to equation (55), substituting
into equation (56), and integrating once, we get,

W
Cy = - %fqu(x)[-A(x)cos wy + B(x)(—u;-q‘- - % sin 2wy + -’15> -
o)

% G(x)cos w,(sin®w, + 2):Idx

Xy
Cx = -g-[ R(x)tan G[A(x) Wy +-’-':2-> - B(x)cos wy +

2G(x)<-w-2ll - T];-s:l.n 2w, + -’-3] dx

Xy
2
St

(o]

[(x - x5)R(x) + tan @ Rz(x)][-A(x)cos wy +

B(x)(%l— - -il-;- sin 2u, +-’E> - % G(x)cos wu(sinawu+2):|dx

where
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A(x) = 2 sin®s

X =
B(x) -hivz-sin e[( zx°>cos o +%sin e] - 2 8in 20 ten o

2

G(x) ={<—%’}-> [—1;- sin 0 +-(f-%—x—9-l cos 9J+ta.na.cos 6}

VWhen the entire body experiences compression flow, the limit of
Integration x,; may be replaced by 1, and wy by 32‘-, whereupon equa~
tions (60) simplify to,

2 )
. X f R(x)B(x)dx

(o]

Cy

5
[o)

3
Cx = 8 [ R(x)tan o[A(x) + 6(x)]ax > (61)

1
on = X [ [(x - xo)R(x) + tan 0 R2(x)]B(x)ax
J

The latter eg_ua.tioné apply so long as the inequality glven below is
satisfied over the entire body:

< 6(x) (62)

For bodies with continually growing cross sections at small angles of
attack (essentially, o < 6(x)), the inequality (62) will in fact be
satisfied; attention in this case cen, therefore, be confined to the
pimpler set of equations (61). It is to be noted in equations (61) that
both the normal force and pitching moment depend only on B(x) . Then,
since o mst be small by virtue of equation (62), the small-angle
approximation becomes valid, so that B(x) may be written as the sum

of two terms, each linear in g or a alone., Therefore, Cy and Cp are
expressible in terms of stability derivatives in the usual way; that is,
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@ v,
g —>o
> (63)
o oC
- (30) ar2) @
améo Qg{;:‘ v
q->o0 J

Matching terms in equations (63) and (61), we find,

= =Cy, = 5 R(x)sin 26 ax
a >0 o)

1
N = = 2% X R(x) 2 _ X%
€> CNg = 3 [ R(x)[z sin 20 + 2 ==~ sin e]ax > CN,

g>o
(Ba290=cma=-§-’;-[[xli(x)+ta.n9R2(x)]sin2edx+-xz—°-CNm >
.aim. = = - glfz[xR(x)q-ta,n 2] IRz(x)]l:-}E sin 29 +
B%,—z 51 :
q->o
2
it L LW C) A

(64)

Thus, comparing terms with the transfer relations, equations (54), it
can be seen that under the same conditions for which equation (63) is
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valid, the transfer relations are also valid, for the integrals in the
last three of equations (64) correspond to the stability derivatives
Cy. > c'"a.o’ and Cmqo, as may be verified by letting x5 be zero in

equation (61).

Stability derivatives for large values of « and g.~ For larger
values of o and ql/V, for which the inequality (62) fails, it is nec-
essary to return to equations (60). In this case, it is still possible
to write a set of equations anslogous to equations (63), although the
definitions of the stability derivatives must be revised somevwhat. Usu-~
ally, in a stability analysis, one is interested in the small deviations
Trom some equilibrium condition. This may be represented in equations
(60) by letting o and g be,

@ = aqp + Ja%s A
(65)
Q= gp +4q
where ap and qp are the le of attack and pitching veloecity corre~
sponding to the equilibrium an%’cr:!.m) condition, and Acx and AqQ are small

deviations in these guantities. Correspondingly, the normal-force and
pltching-moment coefficients may be written,

Cy = Cyloaq, ap) + ACy

(66)
Cn = Cm(aq, ap) + ACp

where Cpy(aq, @p) and Cm(ap, gp) are equations (60) with o and g replaced
by agq and qg. Then, since Aa and Aq are small, use of the small-angle

gpproximation is again permissible. Hence, rétaining only first-order
terms in Ax and Ag, we may write the changes ACy and ACy as,

N
aCN qu
AC =

Aq-%o

> (67)
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The quantities in parentheses are the stability derivatives, corresponding
to the anslogous terms in equations (63). Now, however » they are to be

evaluated near the equilibrium condition, and their values will depend on
the angle of attack ap and pitching velocity dp corresponding to that

condition; that is,

cht.

CNq

The

G_Z_D

N, =>0

v

v

Aq—=>o0

(3ch
A =->0
oCp
aAqZ
Aq—=>O J

dc *u
() -t
o

Xy A
= - %f R(x)H(x, aq, qp)ax

o

[e]

q $ (68)
2

= / [(x - x0)R(x) + tan 6 R3(x)]H(x, ap, gp)ax

-2 xu-( )R(x) + ¢ 2(x)13(
—é—f‘_[ [(x-xo x)+tan 9 R x)]Jx:a‘I': Q.T)dx

quantities H and J are, from equations (60),

3
—3 — gy e— — —— D o —
H- (2 I sin 2w, + cos wy(sin2w,; + 2) ;
> (69)

= (% |
7= (%

wherein

T e e e e R, g = e = s A S 4 Y ——— e Al o e 4 P rm—— % o A A e A e n e e oo e v =

1

n

sin 2w, +-’E> BBZ -2 cos wy(sinw, +2) oa

CRE )
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_ (% R X =Xo 2 2
= -—V-Z-)secaaT[i sin 29+2( > )cos 0 1+2 tan aTsec2aTcos 0

2:; = {?3[% sin 0+ <x -Zx°>cos GT-l-ta.n aT[-l% sin 29+2<x -Zx°>cosae]
()
v

A few remarks may be in order regarding the use of equations (68). First )
it can easily be verified that the transfer relations, equations (54), are
still valid, so that for a given trim condition, it is only necessary to
compute equations (68) for a single convenient axis position. Also, it
should be noted that equations (68) ,actually contain (64), as may be veri-
fied by putting o = qp = 0, wy = 2, and x; = 1 in equations (68).
Second, with regard to the dependence of the stability derivatives on

and ap: For any practical case it is not conceivable that the pitching
velocity parameter qT'L /V can ever became very large; hence » the depend-
ence of the stability derivatives on Qp 1s probably not significant. On
the other hand, the equilibrium angle of attack ap can conceivably be
very large; in this event, the stability derivatives as evaluated by equa-
tions (68) can differ significantly from those evaluated according to
equations (6L4) and should be used in their place.

Uniform vertical scceleration.- The impact theory, when applied to &
uniformly accelerating motion, gives zero for the force and moment pro-
portional to the acceleration parameter, &l /V. This result is to be
expected in view of the following considerations. It is known (ref. 10)
that cN&, is closely related to the build-up in normal force that occurs

following a step change in angle of attack; more precisely, it is propor-
tional to the area enclosed by the indicial response curve and the steady-
state ordinate of the indicial curve. Now, implicit in the development

of impact theory is the assumption that the pressure response to the impact
of each flow particle is instantaneous. As a consequence, the indicial
response in normal force to a step change in angle of attack is itself a
step, whence it follows that the area proportional to CN- is zero. Like-

wise, Cy s is proportional to the area between the indic:La.l pitching-moment
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variation and its steady-state ordinate. Again, by impact theory this
variation is a step, so that, for the same reason, Cmu is zero.

Stability derivatives for a cone.~ Finally, in order to complete
the set of stability derivatives obtained earlier by the potential
theories, the stability derivatives for a cone as derived from impact
theory are presented below. Calculations are based on equations (6k4)
with x, = O, and apply only to the case wherein the independent varia-
bles (@, &, q) approach zero.

(70)

g & & F
wl&
"

il
]
~
=
+
4
N
S’

It is of interest to note (comparing egs. (70) with egs. (40), (45),
and (53)) that the centers of pressure for the angle-of-attack and
pitching ceses as derived from impact theory are identical to those
derived from the potential theories.

DISCUSSION OF RESULTS

In order to indicate the nature of the results as obtained from the
theoretical methods developed herein, numerical calculations have been
carried out for two cones having semivertex angles of 10° and 20°.
Results for the variation with Mach number of the stability derivatives
Cy, o’ CNqo » and CN&. are shown in figures 1 to 3. The pitching-moment

veriations are not shown since in all cases they are simple multiples of
the normal-force results (see egs. (40), (45), (50), (53), and (70)). The
curves obteined from potential theory have been terminsted at the low end
of the Mach number scsle slightly below the Mach number for which the bow
wave detaches (ref. 11), and at the high end, at the Mach number for which
the Mach cone lies on the body surface.

———— R e e e - . — -
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As noted before, it is believed that the results for the stability
derivatives due to pitching velocity and to vertical acceleration,
obtained by use of a first-order and a combingtion first~ and second-
order potential theory, are comparable in accuracy to the results for
CNa. obtained by the corresponding theory. Therefore, in order to esti-

mate the Mach number range in which the results should apply, consider
Pirst the results for Cx o (fig. 1). Here, s comparison is made between -

the various approximate results and the exact numerical result as obtgined
from reference 2. The curves labeled "first-order, exact Cp" and "first-
and second-order, exact Cp" are those obtained from calculations based on
equations (40) and (53). The curve labeled “first-order, approximate "
is the result, when using the first-order potential solution, of retaining
only the first-order term in the expansion of the pressure relation, equa-
tion (28) « It is clear from examination of the results that there is a
significant improvement in accuracy, even in the first-order solution, if
the pressure relation is not approximated. BEven so, however, only the
"hybrid" solution can be said to be applicable throughout the Mach number
range for both cones. Therefore, in the subsequent results, figures 2

and 3, it is to be assumed that only the hybrid solutions are representa-
tive of the exact variations for all Mach numbers within the limits, the
Mach number for bow-wave detachment, and the Mach number corresponding

to Bt = 1. Also shown in figure 1 are the results for Cy, as obtained
from the Newtonian impact theory (egs. (70)). These results are useful as
a gulde for estimating the amount by which the hybrid theory tends to over-
estimate the megnitude of the normal-force coeffieient at the higher Mach
numbers. A fairing of the hybrid-theory result into the impsct-theory
result is egsily accomplished and may serve partially to compensate for
this tendency.

Consider next the results for ch (fig. 2). It is noted that the

curves for the various approximations are in the same relation to one
another as were the curves for the corresponding approximations to CNor.'

Also, as in the previous case, the hybrid-theory result approaches the
result obtained from impact theory in a manner which permits a Jjudicilous

fairing of the two.

Finally, consider the result for Cy, (fig. 3). The interesting
point here is that, in contrast to the case of a wing, CN&, as obtained

from potential theory is positive throughout the Mach number range. This
Pact implies that at least for axes ghead of the center of loading due

to &, the damping moment c,,,q + Cmd. cannot be destabilizing, since the
destabilizing contribution can only arise from a negative value of CN&.
Actually, it can be shown that Cmq + Cm& is not a destabilizing damping

moment for any position of the axis by operating with the transfer rela-
tions (eq. (54)) as was done in reference 10. It is also worthy of note
in figure 3 that CN& vanishes when the Mach cone lies on the body
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. Burface. This result is consistent with that obtained from impact theory,

and, as mentioned previously, implies that at this and greater Mach numbers

the indicial normsl-force response to a step change in angle of attack is
itself a step.

Ames Aeronsutical Iaboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., May 21, 1956
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APPENDIX A
DERIVATION OF PRESSURE COEFFICIENT

We derive here the pressure relationships used in the poténtial-
theory analysis for each of the three motions considered herein.

Consider a body which moves past an X, ¥,, %; coordinate system
fixed with respect to still air. Then from Bernoulli!s equation for
unsteady irrotational flow, one has (ref. 12)

1 2 2 2 Y P Y Po
+ = + + == — Al
q)tl ) (q)xl q>y1 +q)zl) 7 - 1p 7 - lpo ( )
Since the flow is isentropiec,
2. constant
so that,
L
p.7 L3
2=’ (a2)
Po

Substituting equation (A2) in (Al) and solving for p,

Y 7-1 0
7 __ 7 Jy_.2-1P 1 2 2 %)] }.
P P, { 7 To [‘Ptl + 5 <<le * oy S 0y (a3)

4%
But —= = ag , where &, is the speed of sound in still air. Then

[o]
X
7-1
i bt e o))
P Po {1 80> [¢t1+2<q)x1 Ty
=nd 7
y-1

P-P -
R ™

8o
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A reference velocity V i1s now introduced; we define it to be the velocity
of the body in its axial direction, since this will be a constant for all
three motions. Then setting

2 V2 1
I)():qu‘o M2=;-°—2-, q°=-2—p°V2>

we have,

Aot PPN Y [1-7;1»@(%“%1;“’25*2%)] -} s

This equation refers to axes fixed with respect to sti\ll air; we next
consider the transformstions to body axes for each of the three body
motions.

Sinking With Uniform Vertical Velocity

As can be seen on sketch (f), } 2,
the fixed and moving axis systems are —\/{, —
related by, !
h 2
X = X3 + Vt, X,
1
y=9 } (46) Vt, tan
Z =2z; + Vt;tan a v i_ l
b=t ‘ '
+ J Vtana
Then teking derivatives according to, Sketch (f)
Px, = Px
Py, = Py
Pz, = Pz
ox oz

Pp, = Px -t Pa -t B

equation (A5) becomes, in the body x, ¥y, z coordinate system,

e e e - o pUa— -— - —— > m—— o — = —
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7
7=1
2 7 - 29x 205 L2 PR R +cpzf>] }
Cp = — 1~ tan o + -1
P oom2 { [ 2 v v T2 V2 (a7)
Finally, converting to cylindrical coordinates by the transformations,
X=X
y=r cos ® (A8)
z = gin ®

and letting @4 be zero for steady flow, we have for Cp in the moving
axis system,

2 y -1 Py cp.,, P )
Cp., = == - M2 + 2 tan o { == W+ = gin w
1 e {1 5 [ a vcos vs

2 r2 -1
Py +t|>r +(<Pm/) } > (49)

Pitching With Uniform Angular Veloecity

\ The relstion between the fixed
Z and moving axes in this case is
illustrated in sketch (g). The
transformation equations are,

X x = xj;c08 gt, -~ z;8in gt )
. / y = yl
V/q ‘Lq v (AlO)
; z=g+ ¥X,8in qt; + z cos qt,
t =1, J

Equation (A5) becomes

1\

Sketch (g)
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_ .2 7 ~1.o2Px 20x 29,
Cp ,7M2{|:1 5 ME<V =5 qz+\72 ax +

Y
5 2 2 =1
i ¥x Ty ¥ q)zz>] - } (A11)

V2 ve

Changing to cylindrical coordinates by equation (A8), and letting @i be
zero for steady flow,

20y 29 Pr P >
2 y=-1 X g 24x (A
= i<l - L2 XL X in S9X (2L oin 0 + — ©
Cp2 e { 5 [V 72 qr sin w + - v 8 - cos +
2 2 2 -1
+ + (@y/r)
Px r — CP(,_)/ ] } -1 (A12)
v
Sinking With Uniform Vertical Acceleration
Here, the relations between the r 4
fixed and moving axes are (sketch (h)) ‘ Vi,
[ ¥4
A X,
Y =7, Vati/2
avt,2 (a13) YV x _{
zZ =2z, + 5
Sketch (h)

The pressure equetion (A5) then becomes,
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. 7-1
_ 2 y -1 .of20x 20t 2080, 9% + 9F + @)
CP_7M-2_{[1' 2 Mz(V ety 7 = )

(A1k)
Converting to cylindrical coordinates by equation (A8),
cP="'2— -7'1M22q)x+2q)t+2&. SJ-‘i’-cosm+-q)—rs:i_noo>+
3 MR 2 v V2 rv v
L
2 4 2 + (9 /T)2]Y
Px %VZ ! ]} 1 (A15)
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